Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 4): 119065, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723990

RESUMO

The present research study combines chitin from shrimp waste with the oxide-rich metakaolin. Metakaolin is a blend of mixed oxides rich in silica and alumina with good adsorbent properties. The chitin@metakaolin (CHt@M.K.) composite was synthesized and characterized using FTIR, SEM, TGA, XRD and XPS techniques. Cr(VI) removal studies were compared for chitin and CHt@M.K. through adsorption. It was found that the adsorption capacity of CHt@M.K. is 278.88 mg/g, almost double that of chitin, at pH 5.0 in just 120 min of adsorption. Isotherm models like Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were investigated to comprehend the adsorption process. It was revealed that Langmuir adsorption isotherm is most suitable to elucidate Cr(VI) adsorption on CHt@M.K. The adsorption kinetics indicate that pseudo first order was followed, indicating that the physisorption was the process that limited the sorption process rate. The positive enthalpy change (20.23 kJ/mol) and positive entropy change (0.083 kJ/mol K) showed that the adsorption process was endothermic and more random at the solid-liquid interface. The negative free energy change over entire temperature range was an indicator of spontaneity of the process. Apart from all these, the non-covalent interactions between Cr(VI) and composite were explained by quantum calculations based models.

2.
Tissue Eng Regen Med ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520636

RESUMO

BACKGROUND: In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS: Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS: The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION: Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.

3.
Int J Biol Macromol ; 263(Pt 2): 129989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354916

RESUMO

In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements. The Langmuir, Freundlich and Temkin isotherms were applied to analyze the equilibrium data. The thermodynamic analysis of adsorption isotherms was performed. A number of equations and kinetic models were used to describe the adsorption rate data, including pseudo-first (PFOE) and pseudo-second (PSOE) order kinetic equations. The obtained test results show that the synthesized biomaterial, compared to pure chitosan, is characterized by greater resistance to high temperatures. Moreover, this biomaterial had excellent adsorption properties. For the adsorption of Cr (VI), the equilibrium state was reached after 120 min, and the sorption capacity was 455.9 mg/g. In addition, DFT calculations and NCI analyses were performed to get more light on the adsorption mechanism of Cr (VI) on the prepared biocomposite.


Assuntos
Quitosana , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Óxidos , Águas Residuárias , Quitosana/química , Cromo/química , Adsorção , Alginatos/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Materiais Biocompatíveis , Nanocompostos/química , Concentração de Íons de Hidrogênio
4.
Int J Biol Macromol ; 254(Pt 1): 127767, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287576

RESUMO

Water pollution by organic dyes is one of the most serious environmental problems worldwide. Malachite green (MG) is considered as one the serious organic dyes which is discharged in wastewater by leather and textile manufacturing plants. MG dye can cause severe hazards to the environment and human health. Therefore, the removal of MG dye from wastewater is very important and essential. This study aims to synthesize a new magnetic hydrochar grafted to chitosan (MWSHC@CS) for the removal of MG dye from the aqueous solutions. Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and Zeta potential analysis were used to characterize the synthesized MWSHC@CS. Batch experiments were conducted to optimize MG dye adsorption conditions, including adsorbent mass, pH, temperature, initial concentration, and contact time. The results revealed that MWSHC@CS had an excellent removal efficiency (96.47 %) for MG dye at the optimum condition (at m: 20 mg, pH: 7.5, t: 420 min, and T: 298 K). Adsorption isotherms outcomes revealed the MG adsorption data were best fit by the Langmuir model with a maximum adsorption capacity (420.02 mg/g). Adsorption kinetics outcomes exhibited that the adsorption process of MG dye fitted well to the Elovich model. The thermodynamic results revealed that the adsorption process was physical, exothermic, and spontaneous. The adsorption mechanisms of MG onto MWSHC@CS were hydrogen bonding, electrostatic interaction, and π-π interactions. Furthermore, MWSHC@CS showed excellent reusability for the removal of MG over five cycles of adsorption-desorption (83.76 %). In conclusion, the study provides a new, low-cost, and effective magnetic nanocomposite based on chitosan as a promising adsorbent for the high-performance removal of MG dye from aqueous solutions.


Assuntos
Quitosana , Corantes de Rosanilina , Poluentes Químicos da Água , Humanos , Adsorção , Águas Residuárias , Quitosana/química , Termodinâmica , Corantes/química , Água/química , Cinética , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Environ Res ; 241: 117544, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944689

RESUMO

This study addresses the urgent need for practical solutions to industrial water contamination. Utilizing Algerian Bentonite as an adsorbent due to its regional prevalence, we focused on the efficiency of the Bentonite/Sodium dodecylbenzene sulfonate (SDBS) matrix in Methylene Blue (MB) removal. The zero-charge point and IR spectroscopy characterized the adsorbent. Acidic pH facilitated SDBS adsorption on Bentonite, achieving equilibrium in 30 min with a pseudo-second-order model. The UPAC and Freundlich model indicated a qmax of 25.97 mg/g. SDBS adsorption was exothermic at elevated temperatures. The loaded Bentonite exhibited excellent MB adsorption (pH 3-9) with PSOM kinetics. Maximum adsorption capacity using IUPAC and GILES-recommended isotherms was qmax = 23.54 mg/g. The loaded Bentonite's specific surface area was 70.01 m2/g, and the Sips model correlated well with experimental data (R2 = 0.98). This study highlights adsorption, mainly Bentonite/SDBS matrices, as a promising approach for remediating polluted areas by efficiently capturing and removing surfactants and dyes, contributing valuable insights to address industrial water contamination challenges.


Assuntos
Bentonita , Poluentes Químicos da Água , Bentonita/química , Azul de Metileno , Águas Residuárias , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Adsorção , Cinética , Água
6.
J Fluoresc ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015296

RESUMO

In this study, we have synthesized a novel Schiff base-centered chemosensor, designated as SB, with the chemical name ((E)-1-(((6-methylbenzo[d]thiazol-2-yl) imino)methyl)naphthalen-2-ol). This chemosensor was structurally characterized by FT-IR, 1H NMR, UV-Vis and fluorescence spectroscopy. After structural characterization the chemosensor SB was subsequently employed for the detection of Cu2+ and Ag+, using fluorescence spectroscopy. The chemosensor SB showed excellent ability to recognize the target metal ions, leading to fluorescence enhancement and color change from yellow to yellowish orange for Cu2+ and yellow to radish for Ag+ ions. The detection capabilities of this chemosensor were impressive, showing excellent selectivity and an exceptionally low detection limit of 0.0016 µM for Cu2+ and 0.00389 µM for Ag+. Most notably, our approach enables the quantitative detection both metal ions in different water and soil samples at trace level. This achievement holds great promise for analytical applications and offers significant contributions to the field of chemical sensing and environmental protection.

7.
Front Plant Sci ; 14: 1221434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662164

RESUMO

Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.

8.
Environ Sci Pollut Res Int ; 30(49): 107772-107789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740156

RESUMO

Nitrates level in water is a worldwide problem that represents a risk to the environment and people's health; efforts are currently devoted to the development and implementation of new biomaterials for their removal. In this study, chitosan (Ch) from shrimp waste and the related epichlorohydrin-modified crossover chitosan (Ch-EPI) were used to remove nitrates from aqueous solutions. The mechanism of selective nitrate removal was elucidated and validated by theoretical calculations. The physicochemical performance of Ch and Ch-EPI was investigated through the main parameters pH, adsorption capacity, contact time, initial nitrate concentration, coexisting anions, and temperature. The experimental data were fitted to widely used adsorption kinetic models and adsorption isotherms. The maximum percentage of nitrate adsorption was reached at an equilibrium pH of 4.0 at an adsorbent dose of 2.0 g/L after a contact time of 50 min. Competing anion experiments show that chloride and sulfate ions have minimal and maximal effects on nitrate adsorption by Ch-EPI. Experimental adsorption data are best fitted to pseudo-second-order kinetic and isothermal Langmuir models. The maximum adsorption capacities of Ch and Ch-EPI for nitrate removal were 12.0 mg/g and 38 mg/g, respectively.


Assuntos
Quitosana , Poluentes Químicos da Água , Humanos , Nitratos , Epicloroidrina , Ânions , Água , Adsorção , Cinética , Modelos Teóricos , Concentração de Íons de Hidrogênio
9.
Materials (Basel) ; 16(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512422

RESUMO

Environmental pollution is steadily rising and is having a negative influence on all living things, especially human beings. The advancement of nanoscience in recent decades has provided potential to address this issue. Functional metal oxide nanoparticles/nanofibers have been having a pull-on effect in the biological and environmental domains of nanobiotechnology. Current work, for the first time, is focusing on the electrospinning production of Zr0.5Sn0.5TiO3/SnO2 ceramic nanofibers that may be utilized to battle lethal infections swiftly and inexpensively. By using characterizations like XRD, FT-IR, FESEM, TEM, PL, and UV-Vis-DRS, the composition, structure, morphology, and optical absorption of samples were determined. The minimum inhibitory concentration (MIC) approach was used to investigate the antibacterial activity. Notably, this research indicated that nanofibers exert antibacterial action against both Gram-positive and Gram-negative bacteria with a MIC of 25 µg/mL. Furthermore, negatively charged E. coli was drawn to positively charged metal ions of Zr0.5Sn0.5TiO3/SnO2, which showed a robust inhibitory effect against E. coli. It was interesting to discover that, compared to pure TiO2, Zr0.5Sn0.5TiO3/SnO2 nanofibers revealed increased photocatalytic activity and exceptional cyclability to the photodegradation of Rhodamine B. The composite completely degrades dye in 30 min with 100% efficacy and excellent (97%) reusability. The synergetic effects of Zr0.5Sn0.5TiO3 and SnO2 may be responsible for increased photocatalytic and bactericidal activity.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37294491

RESUMO

Since the release of antibiotics as emerging contaminants into the environmental water can cause severe difficulties for human health, their removal from the water is necessary. In this regard, a novel environmentally friendly adsorbent was developed based on green sporopollenin, which was magnetized and modified with magnesium oxide nanoparticles to produce MSP@MgO nanocomposite. The newly developed adsorbent was applied to remove tetracycline antibiotic (TC) from aqueous media. The surface morphology of the MSP@MgO nanocomposite was characterized using FTIR, XRD, EDX, and SEM techniques. The effective parameters of the removal process were studied, and it was confirmed that the chemical structure of TC was highly affected by changes in pH solution due to different pKa; therefore, the results showed that pH 5 was the optimum. Also, the maximum sorption capacity of MSP@MgO for TC for adsorption was obtained at 109.89 mg.g-1. In addition, the adsorption models were investigated, and the process was fitted with the Langmuir model. Thermodynamic parameters showed that the process was spontaneous (ΔG < 0), endothermic (ΔH > 0) and the adsorption mechanism was following the physisorption mechanism at room temperature.

11.
Biosensors (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366953

RESUMO

The ultimate objective of this research work is to design a sensitive and selective electrochemical sensor for the efficient detection of ascorbic acid (AA), a vital antioxidant found in blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO NC were investigated using various techniques to ensure their suitability for the sensor. The resulting sensor electrode was able to detect a broad range of AA concentrations (0.5-1571 µM) in neutral phosphate buffer solution, with a high sensitivity of 0.4341 µAµM-1cm-2 and a reasonable detection limit of 0.062 µM. The sensor's great sensitivity and selectivity allowed it to accurately determine the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great potential in detecting AA from real samples.


Assuntos
Grafite , Nanocompostos , Humanos , Grafite/química , Ácido Ascórbico , Reprodutibilidade dos Testes , Nanocompostos/química , Carbono/química , Eletrodos , Técnicas Eletroquímicas/métodos
12.
Front Bioeng Biotechnol ; 11: 1177981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152657

RESUMO

Nanomaterials have attracted more curiosity recently because of their wide-ranging application in environmental remediation and electronic devices. The current study focuses on zinc oxide nanoparticles' (ZnO NPs) simple production, characterization, and applications in several fields, including medicinal and photocatalytic degradation of dyes. The non-aqueous-based reflux method is helpful for ZnO NP synthesis; the procedure involves refluxing zinc acetate dihydrate precursor in ethylene glycol for 3 hours in the absence of sodium acetate, in which the refluxing rate and the cooling rate are optimized to get the desired phase, and the unique morphology of polyol-mediated ZnO NPs; it has been achieved using the capping agent TBAB (tetra-butyl ammonium bromide) and precursor zinc acetate dihydrate. UV-Vis, FTIR, XRD, and FESEM structurally characterized polyol-mediated ZnO-NPs. The results show that the material is pure and broadly aggregated into spherical nanoparticles with an average particle size of 18.09 nm. According to XRD analysis, heat annealing made the crystallites more prominent and favored a monocrystalline state. These results and the low cost of making polyol-mediated ZnO NPs demonstrate photocatalytic and antimicrobial properties.

13.
Environ Monit Assess ; 195(6): 633, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131087

RESUMO

We designed and synthesized a fluorescent "turn-on" and colorimetric chemosensor ((E)-1-((p-tolylimino)methyl)naphthalen-2-ol) SB. The structure of the synthesized chemosensor was investigated by 1H NMR, FT-IR, and fluorescence spectroscopy, and its sensing properties were studied toward Mn2+, Cu2+, Pb2+, Cd2+, Na+, Ni2+, Al3+, K+, Ag+, Zn2+, Co2+, Cr3+, Hg2+, Ca2+, and Mg2+. SB showed an excellent colorimetric (yellow to yellowish brown) in MeOH and fluorescence "turn-on" sensing response to Cu2+ in MeOH/Water (10/90, v/v) media. The sensing mechanism of SB toward Cu2+ was investigated by FT-IR, 1H NMR titration, DFT studies, and Job's plot analysis. The detection limit was calculated to be very low 0.0025 µg mL-1 (0.0025 ppm). Furthermore, the test strip containing SB also showed excellent selectivity and sensitivity toward Cu2+ in a solution medium and when supported on a solid medium.


Assuntos
Colorimetria , Bases de Schiff , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Corantes
14.
Materials (Basel) ; 16(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37176198

RESUMO

Functional materials have long been studied for a variety of environmental applications, resource rescue, and many other conceivable applications. The present study reports on the synthesis of bismuth vanadate (BiVO4) integrated polyaniline (PANI) using the hydrothermal method. The topology of BiVO4 decked PANI catalysts was investigated by SEM and TEM. XRD, EDX, FT-IR, and antibacterial testing were used to examine the physicochemical and antibacterial properties of the samples, respectively. Microscopic images revealed that BiVO4@PANI are comprised of BiVO4 hollow cages made up of nanobeads that are uniformly dispersed across PANI tubes. The PL results confirm that the composite has the lowest electron-hole recombination compared to others samples. BiVO4@PANI composite photocatalysts demonstrated the maximum degradation efficiency compared to pure BiVO4 and PANI for rhodamine B dye. The probable antimicrobial and photocatalytic mechanisms of the BiVO4@PANI photocatalyst were proposed. The enhanced antibacterial and photocatalytic activity could be attributed to the high surface area and combined impact of PANI and BiVO4, which promoted the migration efficiency of photo-generated electron holes. These findings open up ways for the potential use of BiVO4@PANI in industries, environmental remediation, pharmaceutical and medical sectors. Nevertheless, biocompatibility for human tissues should be thoroughly examined to lead to future improvements in photocatalytic performance and increase antibacterial efficacy.

15.
Crit Rev Anal Chem ; : 1-25, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029905

RESUMO

Thiazole and its derivatives play an important role in biological and non-biological fields due to several structural and electronic behaviors associated with it. Thiazole derivatives act as chemosensors because they formed metal complexes upon interacting with various heavy metal ions like Cd2+, Co2+, Cr3+, Fe3+, Ag+, Al3+, Cu2+, Pd2+, Hg2+, Ni2+, Ga3+, In3+, Sn4+, Pb2+, Zn2+ as well as other cations. These metal ions are of prime importance from the environmental point of view with high. This review article focuses on the thiazole-based colorimetric as well as fluorometric sensor for the recognition of different heavy metal cations in various specimens like agricultural, biological, and environmental. It also summarizes the binding stoichiometry, detection limit, pH, structure, and practical application of the reported thiazole-based chemosensors. Further, the sensing performances, have been discussed and compared with some reported organic sensors.

16.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985895

RESUMO

Bacterial infections remain a serious and pervasive threat to human health. Bacterial antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development of nanomaterials has made it possible to address issues in the biomedical, energy storage, and environmental fields. This paper reports the successful synthesis of CeO2-SnO2 composite nanofibers via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron microscopy assessments showed that the average diameter of CeO2-SnO2 nanofibers was 170 nm. The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of the CeO2-SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the light absorption property and enriched charge transmission of photoinduced electron-hole duos, which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli and CeO2-SnO2 composite nanofibers depicted excellent activity. The findings of this work point to new possibilities as an electrode material in energy storage systems and as a visible-light-active photocatalyst for the purification of chemical and biological contaminants, which would substantially benefit environmental remediation processes.

17.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36831944

RESUMO

Exposure to hydroquinone (HQ) can cause various health hazards and negative impacts on the environment. Therefore, we developed an efficient electrochemical sensor to detect and quantify HQ based on palladium nanoparticles deposited in a porous silicon-polypyrrole-carbon black nanocomposite (Pd@PSi-PPy-C)-fabricated glassy carbon electrode. The structural and morphological characteristics of the newly fabricated Pd@PSi-PPy-C nanocomposite were investigated utilizing FESEM, TEM, EDS, XPS, XRD, and FTIR spectroscopy. The exceptionally higher sensitivity of 3.0156 µAµM-1 cm-2 and a low limit of detection (LOD) of 0.074 µM were achieved for this innovative electrochemical HQ sensor. Applying this novel modified electrode, we could detect wide-ranging HQ (1-450 µM) in neutral pH media. This newly fabricated HQ sensor showed satisfactory outcomes during the real sample investigations. During the analytical investigation, the Pd@PSi-PPy-C/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Hence, this work can be an effective method in developing a sensitive electrochemical sensor to detect harmful phenol derivatives for the green environment.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Hidroquinonas/análise , Hidroquinonas/química , Polímeros/química , Nanopartículas Metálicas/química , Silício , Paládio/química , Pirróis/química , Fuligem , Porosidade , Reprodutibilidade dos Testes , Carbono/química , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos
18.
Chemosphere ; 314: 137604, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574789

RESUMO

Depletion of non-renewable fuel has obliged researchers to seek out sustainable and environmentally friendly alternatives. Membranes have proven to be an effective technique in biofuel production for reaction, purification, and separation, with the ability to use both porous and non-porous membranes. It is demonstrated that a membrane-based sustainable and green production can result in a high degree of process intensification, whereas the recovery and repurposing of catalysts and alcohol are anticipated to increase the process economics. Therefore, in this study sustainable biodiesel was synthesized from inedible seed oil (37 wt%) of Cordia myxa using a membrane reactor. Transesterification was catalyzed by heterogenous nano-catalyst of indium oxide prepared with leaf extract of Boerhavia diffusa. Highest biodiesel yield of 95 wt% was achieved at methanol to oil molar ratio of 7:1, catalyst load 0.8 wt%, temperature 82.5 °C and time 180 min In2O3 nanoparticles exhibited reusability up to five successive transesterification rounds. The production of methyl esters was confirmed using Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. The predominant fatty acid methyl ester detected in the biodiesel was 5, 8-octadecenoic acid. Biodiesel fuel qualities were determined to be comparable to worldwide ASTM D-6571 and EN-14214 standards. Finally, it was concluded that membrane technology can result in a highly intensified reaction process while efficient recovery of both nano catalysts and methanol increases the economics of transesterification and lead to sustainable production.


Assuntos
Cordia , Nanopartículas , Óleos de Plantas/química , Metanol , Biocombustíveis , Biomassa , Esterificação , Catálise , Etanol , Ácidos Graxos/química
19.
Langmuir ; 38(51): 16203-16213, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36516225

RESUMO

Developing high-performance, safer, and affordable flexible batteries is of urgent need to power the fast-growing flexible electronics market. In this respect, zinc-ion chemistry employing aqueous-based electrolytes represents a promising combination considering the safety, cost efficiency, and both high energy and high-power output. Herein, we represent a high-performance flexible in-plane aqueous zinc-ion miniaturized battery constructed with all electrodeposited electrodes, i.e., MnO2 cathode and zinc anode with polyimide-derived interdigital patterned laser-scribed carbon (LSC) as the current collector as well as the template for electrodeposition. The LSC possesses a cross-linked network of graphitic carbon sheet, which offers large surface area over low footprint and ensures active materials loading with a robust conductive network. The LSC with high zincophilic characteristic also offers dendrite-free zinc deposition with very low Zn2+ plating stripping overpotential. Benefitting from the Zn//MnO2-rich redox chemistry, the ability of the 3D LSC network to uniformly distribute reaction sites, and the architectural merits of in-plane interdigitated electrode configuration, we report very high capacity values of ∼549 mAh/g (or ∼523 µAh/cm2) and 148 mAh/g (or 140 µAh/cm2) at 0.1 A/g (0.095 mA/cm2) and 2 A/g (1.9 mA/cm2) currents, respectively. The device was also able to maintain a high capacity of 196 mAh/g (areal capacity of 76.19 µAh/cm2) at 1 A/g (0.95 mA/cm2) current after 1350 cycles. The flexibility of the device was demonstrated in polyacryl amide (PAM) gel polymer soaked with a 2 M ZnSO4 and 0.2 M MnSO4 electrolyte, which exhibited a comparable specific capacity of ∼102-110 mAh/g in flat condition and different bending (100° or 160° bending) conditions. The device does not use any conventional current collector, separator, and conductive or polymer additives. The overall process is highly scalable and can be completed in less than a couple of hours.

20.
Chemosphere ; 308(Pt 3): 136303, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084828

RESUMO

Layered double hydroxides (LDHs) are a class of clays with brucite like layers and intercalated anions. Hybrids of carbon nanomaterials and layered double hydroxides (C-LDHs) are promising nanomaterials due to their versatile properties and the large number of composition/preparation variables available for fine-tuning. Several techniques are available for the synthesis of these novel C-LDHs nanocomposites. This article assess developments in the synthesis and applications of C-LDHs in water and wastewater treatment via using artificial intelligence approaches. In addition, current challenges and possible strategies are discussed from the viewpoint of synthesis and application. It is concluded that the use of C-LDH is expected to produce interesting results. The anisotropic properties and good dispersion ability make them suitable to be used as particulates in the dispersion phase of electro-responsive and electro-rheological fluids. Although these materials have been tested for the removal of contaminants from single component solutions in water. In addition, application of artificial intelligence in this regard is discussed. At the end, the necessity of evaluating their performance in the removal of contaminants from multi-components solutions is proposed. Finally the challenges in obtaining material with precisely controlled particle sizes and morphology must be addressed.


Assuntos
Águas Residuárias , Água , Inteligência Artificial , Carbono , Argila , Hidróxidos , Hidróxido de Magnésio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA